Detailled semantic labeling (2D) result


Name X. Yang
Affiliation Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
Abbreviation RADI
Strategy (u)nsupervised, (s)upervised, (h)ybrid s


Overall statistics, reference set: full_reference


Number of non processed tiles by this participant: 0
↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.928
0.010
0.028
0.017
0.002
0.014
building
0.013
0.973
0.004
0.003
0.000
0.006
low_veg
0.039
0.008
0.865
0.071
0.000
0.017
tree
0.030
0.005
0.088
0.873
0.002
0.004
car
0.062
0.001
0.002
0.015
0.908
0.011
clutter
0.196
0.098
0.103
0.021
0.005
0.577
Precision/Correctness
0.917
0.958
0.861
0.869
0.942
0.715
Recall/Completeness
0.928
0.973
0.865
0.873
0.908
0.577
F1
0.922
0.966
0.863
0.871
0.925
0.639

Overall accuracy 0.900

Overall statistics, reference set: no_boundary


Number of non processed tiles by this participant: 0
↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.945
0.007
0.023
0.012
0.000
0.013
building
0.010
0.981
0.002
0.002
0.000
0.006
low_veg
0.028
0.004
0.891
0.060
0.000
0.016
tree
0.021
0.003
0.074
0.897
0.001
0.003
car
0.007
0.001
0.000
0.010
0.970
0.012
clutter
0.186
0.083
0.091
0.017
0.005
0.618
Precision/Correctness
0.937
0.972
0.883
0.897
0.972
0.736
Recall/Completeness
0.945
0.981
0.891
0.897
0.970
0.618
F1
0.941
0.976
0.887
0.897
0.971
0.672

Overall accuracy 0.921
=============================================================

Tile top_potsdam_2_13_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9050
0.0102
0.0501
0.0123
0.0022
0.0202
building
0.0116
0.9672
0.0095
0.0067
0.0000
0.0050
low_veg
0.0187
0.0061
0.9171
0.0402
0.0002
0.0177
tree
0.0324
0.0061
0.1039
0.8517
0.0012
0.0047
car
0.0560
0.0007
0.0022
0.0083
0.9278
0.0050
clutter
0.1150
0.1415
0.1294
0.0258
0.0068
0.5814
Precision/Correctness
0.924
0.955
0.872
0.921
0.915
0.474
Recall/Completeness
0.905
0.967
0.917
0.852
0.928
0.581
F1
0.915
0.961
0.894
0.885
0.922
0.522

Overall accuracy 0.902

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_2_13_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9260
0.0059
0.0421
0.0077
0.0001
0.0180
building
0.0078
0.9775
0.0053
0.0052
0.0000
0.0042
low_veg
0.0119
0.0031
0.9397
0.0288
0.0001
0.0166
tree
0.0239
0.0045
0.0856
0.8815
0.0008
0.0038
car
0.0125
0.0004
0.0009
0.0036
0.9775
0.0051
clutter
0.0841
0.1360
0.0975
0.0188
0.0085
0.6551
Precision/Correctness
0.950
0.972
0.897
0.945
0.962
0.455
Recall/Completeness
0.926
0.977
0.940
0.881
0.978
0.655
F1
0.938
0.975
0.918
0.912
0.970
0.537

Overall accuracy 0.926

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_2_14_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.8889
0.0047
0.0822
0.0110
0.0011
0.0121
building
0.0057
0.9801
0.0072
0.0046
0.0000
0.0024
low_veg
0.0096
0.0025
0.9462
0.0367
0.0000
0.0050
tree
0.0135
0.0029
0.1373
0.8446
0.0007
0.0010
car
0.0465
0.0003
0.0034
0.0185
0.9301
0.0012
clutter
0.0825
0.2351
0.1372
0.0578
0.0349
0.4525
Precision/Correctness
0.934
0.949
0.862
0.945
0.912
0.267
Recall/Completeness
0.889
0.980
0.946
0.845
0.930
0.453
F1
0.911
0.964
0.902
0.892
0.921
0.335

Overall accuracy 0.902

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_2_14_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9144
0.0023
0.0660
0.0062
0.0000
0.0111
building
0.0034
0.9895
0.0027
0.0027
0.0000
0.0017
low_veg
0.0054
0.0009
0.9605
0.0287
0.0000
0.0045
tree
0.0098
0.0021
0.1203
0.8665
0.0004
0.0008
car
0.0021
0.0000
0.0003
0.0128
0.9838
0.0009
clutter
0.0583
0.2643
0.1060
0.0609
0.0441
0.4664
Precision/Correctness
0.957
0.970
0.881
0.959
0.944
0.233
Recall/Completeness
0.914
0.989
0.961
0.867
0.984
0.466
F1
0.935
0.979
0.919
0.911
0.964
0.311

Overall accuracy 0.921

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_3_13_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.8959
0.0153
0.0428
0.0207
0.0029
0.0224
building
0.0093
0.9811
0.0032
0.0041
0.0000
0.0022
low_veg
0.0471
0.0165
0.8564
0.0681
0.0001
0.0119
tree
0.0232
0.0055
0.0694
0.8967
0.0015
0.0037
car
0.0515
0.0074
0.0011
0.0224
0.9147
0.0028
clutter
0.1967
0.1158
0.1517
0.0223
0.0032
0.5103
Precision/Correctness
0.903
0.954
0.864
0.901
0.931
0.552
Recall/Completeness
0.896
0.981
0.856
0.897
0.915
0.510
F1
0.900
0.967
0.860
0.899
0.923
0.530

Overall accuracy 0.899

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_3_13_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9214
0.0093
0.0356
0.0130
0.0001
0.0206
building
0.0072
0.9877
0.0007
0.0028
0.0000
0.0015
low_veg
0.0362
0.0078
0.8929
0.0547
0.0000
0.0084
tree
0.0161
0.0041
0.0555
0.9206
0.0010
0.0027
car
0.0036
0.0086
0.0003
0.0142
0.9712
0.0022
clutter
0.1946
0.1071
0.1293
0.0125
0.0037
0.5528
Precision/Correctness
0.930
0.973
0.891
0.929
0.977
0.557
Recall/Completeness
0.921
0.988
0.893
0.921
0.971
0.553
F1
0.925
0.980
0.892
0.925
0.974
0.555

Overall accuracy 0.926

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_3_14_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.8933
0.0134
0.0494
0.0230
0.0028
0.0181
building
0.0074
0.9834
0.0035
0.0039
0.0000
0.0018
low_veg
0.0233
0.0082
0.8999
0.0603
0.0000
0.0083
tree
0.0187
0.0027
0.1291
0.8442
0.0009
0.0043
car
0.0502
0.0003
0.0018
0.0318
0.8955
0.0205
clutter
0.1791
0.1477
0.1389
0.0335
0.0043
0.4965
Precision/Correctness
0.909
0.955
0.834
0.903
0.917
0.658
Recall/Completeness
0.893
0.983
0.900
0.844
0.895
0.496
F1
0.901
0.969
0.865
0.873
0.906
0.566

Overall accuracy 0.890

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_3_14_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9218
0.0077
0.0388
0.0154
0.0003
0.0161
building
0.0057
0.9898
0.0010
0.0025
0.0000
0.0010
low_veg
0.0140
0.0034
0.9296
0.0471
0.0000
0.0060
tree
0.0137
0.0019
0.1149
0.8652
0.0007
0.0035
car
0.0049
0.0001
0.0007
0.0204
0.9526
0.0213
clutter
0.1735
0.1387
0.1159
0.0261
0.0052
0.5405
Precision/Correctness
0.936
0.972
0.857
0.930
0.960
0.687
Recall/Completeness
0.922
0.990
0.930
0.865
0.953
0.540
F1
0.929
0.981
0.892
0.896
0.956
0.605

Overall accuracy 0.915

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_4_13_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9357
0.0054
0.0256
0.0276
0.0009
0.0048
building
0.0096
0.9752
0.0044
0.0056
0.0000
0.0052
low_veg
0.0405
0.0056
0.8191
0.1285
0.0001
0.0062
tree
0.0178
0.0012
0.0254
0.9534
0.0011
0.0011
car
0.0573
0.0005
0.0017
0.0250
0.9126
0.0029
clutter
0.4354
0.0945
0.1480
0.0678
0.0026
0.2518
Precision/Correctness
0.871
0.973
0.841
0.782
0.970
0.798
Recall/Completeness
0.936
0.975
0.819
0.953
0.913
0.252
F1
0.902
0.974
0.830
0.859
0.940
0.383

Overall accuracy 0.887

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_4_13_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9535
0.0029
0.0202
0.0199
0.0000
0.0034
building
0.0051
0.9852
0.0010
0.0041
0.0000
0.0046
low_veg
0.0317
0.0019
0.8456
0.1159
0.0000
0.0048
tree
0.0088
0.0004
0.0165
0.9731
0.0005
0.0006
car
0.0034
0.0001
0.0001
0.0149
0.9790
0.0024
clutter
0.4534
0.0812
0.1397
0.0580
0.0027
0.2651
Precision/Correctness
0.892
0.982
0.873
0.819
0.987
0.825
Recall/Completeness
0.954
0.985
0.846
0.973
0.979
0.265
F1
0.922
0.984
0.859
0.889
0.983
0.401

Overall accuracy 0.911

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_4_14_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.8925
0.0177
0.0456
0.0143
0.0024
0.0275
building
0.0052
0.9799
0.0027
0.0048
0.0000
0.0074
low_veg
0.0672
0.0131
0.7850
0.0863
0.0001
0.0482
tree
0.0263
0.0044
0.0816
0.8761
0.0017
0.0099
car
0.0568
0.0027
0.0009
0.0206
0.8989
0.0201
clutter
0.1628
0.0394
0.1095
0.0127
0.0002
0.6754
Precision/Correctness
0.854
0.941
0.825
0.863
0.955
0.753
Recall/Completeness
0.893
0.980
0.785
0.876
0.899
0.675
F1
0.873
0.960
0.804
0.869
0.926
0.712

Overall accuracy 0.861

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_4_14_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9097
0.0128
0.0418
0.0092
0.0002
0.0262
building
0.0033
0.9863
0.0009
0.0035
0.0000
0.0061
low_veg
0.0555
0.0079
0.8121
0.0765
0.0000
0.0480
tree
0.0185
0.0031
0.0674
0.9014
0.0011
0.0086
car
0.0138
0.0020
0.0000
0.0141
0.9486
0.0215
clutter
0.1589
0.0359
0.0993
0.0099
0.0001
0.6958
Precision/Correctness
0.875
0.958
0.845
0.888
0.985
0.772
Recall/Completeness
0.910
0.986
0.812
0.901
0.949
0.696
F1
0.892
0.972
0.828
0.895
0.967
0.732

Overall accuracy 0.882

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_4_15_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9410
0.0165
0.0318
0.0044
0.0016
0.0047
building
0.0022
0.9918
0.0023
0.0021
0.0000
0.0016
low_veg
0.0580
0.0216
0.8652
0.0461
0.0003
0.0089
tree
0.0632
0.0083
0.0844
0.8338
0.0055
0.0048
car
0.0722
0.0014
0.0023
0.0057
0.9154
0.0030
clutter
0.3100
0.2471
0.1017
0.0125
0.0019
0.3269
Precision/Correctness
0.917
0.946
0.848
0.913
0.942
0.690
Recall/Completeness
0.941
0.992
0.865
0.834
0.915
0.327
F1
0.929
0.969
0.857
0.871
0.929
0.444

Overall accuracy 0.912

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_4_15_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9565
0.0100
0.0278
0.0023
0.0001
0.0033
building
0.0007
0.9958
0.0009
0.0014
0.0000
0.0012
low_veg
0.0386
0.0116
0.9045
0.0390
0.0000
0.0063
tree
0.0457
0.0065
0.0657
0.8745
0.0038
0.0038
car
0.0078
0.0007
0.0002
0.0022
0.9861
0.0028
clutter
0.3296
0.2529
0.0968
0.0084
0.0013
0.3110
Precision/Correctness
0.942
0.964
0.874
0.936
0.971
0.709
Recall/Completeness
0.956
0.996
0.905
0.875
0.986
0.311
F1
0.949
0.980
0.889
0.904
0.978
0.432

Overall accuracy 0.936

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_5_13_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9371
0.0100
0.0181
0.0236
0.0011
0.0101
building
0.0105
0.9784
0.0037
0.0031
0.0000
0.0043
low_veg
0.0743
0.0085
0.8131
0.0913
0.0000
0.0128
tree
0.0384
0.0038
0.0701
0.8836
0.0022
0.0019
car
0.0826
0.0003
0.0004
0.0076
0.8991
0.0101
clutter
0.2276
0.1922
0.0985
0.0148
0.0336
0.4333
Precision/Correctness
0.909
0.960
0.891
0.803
0.930
0.649
Recall/Completeness
0.937
0.978
0.813
0.884
0.899
0.433
F1
0.923
0.969
0.851
0.841
0.914
0.520

Overall accuracy 0.901

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_5_13_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9543
0.0055
0.0143
0.0175
0.0000
0.0083
building
0.0066
0.9851
0.0024
0.0022
0.0000
0.0037
low_veg
0.0676
0.0042
0.8376
0.0803
0.0000
0.0104
tree
0.0243
0.0022
0.0589
0.9116
0.0016
0.0014
car
0.0067
0.0001
0.0000
0.0050
0.9776
0.0105
clutter
0.2029
0.1724
0.0888
0.0121
0.0416
0.4822
Precision/Correctness
0.932
0.976
0.915
0.833
0.944
0.660
Recall/Completeness
0.954
0.985
0.838
0.912
0.978
0.482
F1
0.943
0.980
0.875
0.870
0.960
0.557

Overall accuracy 0.924

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_5_14_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9263
0.0068
0.0161
0.0294
0.0006
0.0208
building
0.0099
0.9823
0.0034
0.0013
0.0001
0.0030
low_veg
0.0588
0.0114
0.8028
0.1016
0.0001
0.0253
tree
0.0347
0.0055
0.0511
0.8976
0.0028
0.0082
car
0.0782
0.0018
0.0023
0.0173
0.8654
0.0349
clutter
0.1622
0.1972
0.1062
0.0335
0.0012
0.4997
Precision/Correctness
0.879
0.926
0.883
0.831
0.955
0.730
Recall/Completeness
0.926
0.982
0.803
0.898
0.865
0.500
F1
0.902
0.953
0.841
0.863
0.908
0.593

Overall accuracy 0.877

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_5_14_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9440
0.0040
0.0109
0.0221
0.0000
0.0190
building
0.0081
0.9868
0.0017
0.0008
0.0000
0.0026
low_veg
0.0455
0.0083
0.8280
0.0949
0.0000
0.0234
tree
0.0257
0.0044
0.0431
0.9179
0.0020
0.0069
car
0.0058
0.0022
0.0005
0.0108
0.9428
0.0380
clutter
0.1465
0.1698
0.0964
0.0301
0.0012
0.5561
Precision/Correctness
0.906
0.945
0.906
0.855
0.971
0.753
Recall/Completeness
0.944
0.987
0.828
0.918
0.943
0.556
F1
0.925
0.966
0.865
0.885
0.957
0.640

Overall accuracy 0.900

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_5_15_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9279
0.0092
0.0336
0.0182
0.0009
0.0101
building
0.0108
0.9788
0.0032
0.0036
0.0000
0.0035
low_veg
0.0367
0.0046
0.7925
0.1293
0.0001
0.0368
tree
0.0314
0.0039
0.0509
0.9080
0.0015
0.0043
car
0.0945
0.0002
0.0017
0.0159
0.8714
0.0164
clutter
0.1911
0.1471
0.0736
0.0123
0.0005
0.5753
Precision/Correctness
0.931
0.941
0.818
0.791
0.975
0.784
Recall/Completeness
0.928
0.979
0.793
0.908
0.871
0.575
F1
0.929
0.960
0.805
0.845
0.920
0.664

Overall accuracy 0.893

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_5_15_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9410
0.0055
0.0300
0.0136
0.0004
0.0094
building
0.0071
0.9858
0.0017
0.0024
0.0000
0.0030
low_veg
0.0215
0.0013
0.8189
0.1218
0.0000
0.0366
tree
0.0208
0.0022
0.0429
0.9296
0.0010
0.0035
car
0.0137
0.0000
0.0001
0.0126
0.9554
0.0182
clutter
0.1806
0.1163
0.0634
0.0100
0.0004
0.6293
Precision/Correctness
0.952
0.961
0.839
0.820
0.984
0.799
Recall/Completeness
0.941
0.986
0.819
0.930
0.955
0.629
F1
0.946
0.973
0.829
0.871
0.970
0.704

Overall accuracy 0.914

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_6_13_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9394
0.0139
0.0157
0.0171
0.0009
0.0130
building
0.0310
0.9554
0.0063
0.0012
0.0000
0.0061
low_veg
0.0170
0.0040
0.9345
0.0406
0.0000
0.0039
tree
0.0453
0.0031
0.0513
0.8963
0.0014
0.0026
car
0.0523
0.0000
0.0003
0.0036
0.9404
0.0034
clutter
0.1955
0.0093
0.2400
0.0240
0.0005
0.5307
Precision/Correctness
0.943
0.971
0.923
0.864
0.957
0.588
Recall/Completeness
0.939
0.955
0.934
0.896
0.940
0.531
F1
0.941
0.963
0.929
0.880
0.948
0.558

Overall accuracy 0.929

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_6_13_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9541
0.0120
0.0125
0.0106
0.0000
0.0108
building
0.0274
0.9647
0.0024
0.0006
0.0000
0.0049
low_veg
0.0108
0.0022
0.9509
0.0334
0.0000
0.0028
tree
0.0296
0.0018
0.0413
0.9241
0.0011
0.0021
car
0.0018
0.0000
0.0001
0.0017
0.9935
0.0030
clutter
0.1854
0.0070
0.2494
0.0223
0.0001
0.5358
Precision/Correctness
0.957
0.978
0.939
0.896
0.987
0.611
Recall/Completeness
0.954
0.965
0.951
0.924
0.993
0.536
F1
0.956
0.971
0.945
0.910
0.990
0.571

Overall accuracy 0.945

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_6_14_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9666
0.0033
0.0125
0.0118
0.0032
0.0026
building
0.0311
0.9616
0.0035
0.0013
0.0002
0.0023
low_veg
0.0501
0.0054
0.8589
0.0788
0.0002
0.0065
tree
0.0320
0.0068
0.0428
0.9143
0.0032
0.0009
car
0.0408
0.0005
0.0007
0.0136
0.9381
0.0063
clutter
0.2106
0.0961
0.2262
0.0178
0.0112
0.4381
Precision/Correctness
0.935
0.983
0.897
0.828
0.939
0.773
Recall/Completeness
0.967
0.962
0.859
0.914
0.938
0.438
F1
0.951
0.972
0.877
0.869
0.939
0.559

Overall accuracy 0.930

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_6_14_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9796
0.0011
0.0090
0.0083
0.0001
0.0019
building
0.0265
0.9696
0.0013
0.0007
0.0000
0.0018
low_veg
0.0350
0.0020
0.8879
0.0704
0.0000
0.0047
tree
0.0215
0.0058
0.0336
0.9362
0.0023
0.0007
car
0.0017
0.0001
0.0001
0.0080
0.9837
0.0064
clutter
0.1855
0.1046
0.2314
0.0128
0.0108
0.4550
Precision/Correctness
0.952
0.989
0.917
0.859
0.981
0.811
Recall/Completeness
0.980
0.970
0.888
0.936
0.984
0.455
F1
0.966
0.979
0.902
0.896
0.982
0.583

Overall accuracy 0.948

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_6_15_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9309
0.0029
0.0270
0.0075
0.0034
0.0282
building
0.0178
0.9656
0.0034
0.0012
0.0000
0.0120
low_veg
0.0443
0.0020
0.8463
0.0505
0.0007
0.0562
tree
0.0488
0.0063
0.1066
0.8272
0.0032
0.0079
car
0.0548
0.0005
0.0030
0.0099
0.9202
0.0116
clutter
0.1012
0.0139
0.0555
0.0056
0.0055
0.8183
Precision/Correctness
0.931
0.986
0.802
0.919
0.927
0.677
Recall/Completeness
0.931
0.966
0.846
0.827
0.920
0.818
F1
0.931
0.976
0.824
0.871
0.924
0.741

Overall accuracy 0.903

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_6_15_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9456
0.0012
0.0226
0.0043
0.0001
0.0262
building
0.0133
0.9746
0.0010
0.0006
0.0000
0.0104
low_veg
0.0284
0.0002
0.8757
0.0400
0.0000
0.0557
tree
0.0383
0.0050
0.0927
0.8549
0.0023
0.0068
car
0.0063
0.0003
0.0003
0.0054
0.9761
0.0116
clutter
0.0928
0.0138
0.0468
0.0040
0.0058
0.8368
Precision/Correctness
0.950
0.991
0.825
0.945
0.970
0.697
Recall/Completeness
0.946
0.975
0.876
0.855
0.976
0.837
F1
0.948
0.983
0.850
0.898
0.973
0.761

Overall accuracy 0.923

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_7_13_class.tif, reference set: full_reference


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9420
0.0143
0.0050
0.0238
0.0012
0.0138
building
0.0168
0.9445
0.0017
0.0018
0.0000
0.0352
low_veg
0.0615
0.0087
0.7593
0.1531
0.0001
0.0173
tree
0.0257
0.0057
0.0855
0.8823
0.0004
0.0005
car
0.0419
0.0014
0.0003
0.0291
0.9108
0.0164
clutter
0.1240
0.0019
0.0187
0.0013
0.0046
0.8495
Precision/Correctness
0.952
0.961
0.872
0.709
0.923
0.821
Recall/Completeness
0.942
0.944
0.759
0.882
0.911
0.849
F1
0.947
0.953
0.812
0.786
0.917
0.835

Overall accuracy 0.911

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

Tile top_potsdam_7_13_class.tif, reference set: no_boundary


↓ predicted || reference →
imp_surf
building
low_veg
tree
car
clutter
imp_surf
0.9559
0.0112
0.0033
0.0167
0.0001
0.0128
building
0.0140
0.9500
0.0008
0.0011
0.0000
0.0342
low_veg
0.0483
0.0059
0.7858
0.1431
0.0000
0.0168
tree
0.0179
0.0041
0.0791
0.8983
0.0002
0.0004
car
0.0037
0.0013
0.0000
0.0198
0.9560
0.0192
clutter
0.1166
0.0016
0.0173
0.0009
0.0045
0.8591
Precision/Correctness
0.960
0.970
0.891
0.744
0.956
0.831
Recall/Completeness
0.956
0.950
0.786
0.898
0.956
0.859
F1
0.958
0.960
0.835
0.814
0.956
0.845

Overall accuracy 0.925

Red/green image, indicating wrongly classified pixels


Original, resized true ortho image for better comparison


Classified image


=============================================================

This webpage is generated by an unofficial python code.